47 research outputs found

    The influence of housing size, style and location on energy and greenhouse gas emissions

    Full text link
    Concern about the growth of greenhouse gas emissions in Victoria has prompted the introduction of legislation to improve the thermal performance of the residential building envelope. Unfortunately, the size of the house is not considered in the rating tool that underpins the legislation. The energy embodied in the constructional materials is also not considered although it too is directly related to the size of the house. Another intrinsic factor relating residential housing energy and greenhouse gas emissions is the location of the residence and the travel preferences of the homeowner. The relationship between the operational, embodied and travel energy associated with a typical residential scenario in Melbourne over the last 50 years is examined in this paper. The analysis found that by the year 2000, the energy associated with work-related travel (44%) now exceeds the operational energy (37%). In terms of greenhouse gas emissions, the contribution from travel energy is almost double that from operational energy (28%).<br /

    Energy analysis of the construction of office buildings /by Graham J. Treloar

    Full text link
    Buildings have a significant impact on the environment due to the energy required for the manufacture of construction materials. The method of assessing the energy embodied in a product is known as energy analysis. Detailed office building embodied energy case studies are very rare. However, there is evidence to suggest that the energy requirements for the construction phase of commercial buildings, including the energy embodied in materials, is a significant component of the life cycle energy requirements. This thesis sets out to examine the current state of energy analysis, determine the national average energy intensities < i.e. embodied energy rates < for building materials and assess the significance of using national average energy intensities for the energy analysis of a case study office building. Likely ranges of variation in the building material embodied energy rates from the national averages are estimated and the resulting distribution for total embodied energy in the case study building simulated. Strategies for improving the energy analysis methods and data are suggested. Detailed energy analysis is shown to be a useful indicative method of quantifying the energy required for the construction of buildings

    Comprehensive embodied energy analysis framework

    Full text link
    The assessment of the direct and indirect requirements for energy is known as embodied energy analysis. For buildings, the direct energy includes that used primarily on site, while the indirect energy includes primarily the energy required for the manufacture of building materials. This thesis is concerned with the completeness and reliability of embodied energy analysis methods. Previous methods tend to address either one of these issues, but not both at the same time. Industry-based methods are incomplete. National statistical methods, while comprehensive, are a ‘black box’ and are subject to errors. A new hybrid embodied energy analysis method is derived to optimise the benefits of previous methods while minimising their flaws. In industry-based studies, known as ‘process analyses’, the energy embodied in a product is traced laboriously upstream by examining the inputs to each preceding process towards raw materials. Process analyses can be significantly incomplete, due to increasing complexity. The other major embodied energy analysis method, ‘input-output analysis’, comprises the use of national statistics. While the input-output framework is comprehensive, many inherent assumptions make the results unreliable. Hybrid analysis methods involve the combination of the two major embodied energy analysis methods discussed above, either based on process analysis or input-output analysis. The intention in both hybrid analysis methods is to reduce errors associated with the two major methods on which they are based. However, the problems inherent to each of the original methods tend to remain, to some degree, in the associated hybrid versions. Process-based hybrid analyses tend to be incomplete, due to the exclusions associated with the process analysis framework. However, input-output-based hybrid analyses tend to be unreliable because the substitution of process analysis data into the input-output framework causes unwanted indirect effects. A key deficiency in previous input-output-based hybrid analysis methods is that the input-output model is a ‘black box’, since important flows of goods and services with respect to the embodied energy of a sector cannot be readily identified. A new input-output-based hybrid analysis method was therefore developed, requiring the decomposition of the input-output model into mutually exclusive components (ie, ‘direct energy paths’). A direct energy path represents a discrete energy requirement, possibly occurring one or more transactions upstream from the process under consideration. For example, the energy required directly to manufacture the steel used in the construction of a building would represent a direct energy path of one non-energy transaction in length. A direct energy path comprises a ‘product quantity’ (for example, the total tonnes of cement used) and a ‘direct energy intensity’ (for example, the energy required directly for cement manufacture, per tonne). The input-output model was decomposed into direct energy paths for the ‘residential building construction’ sector. It was shown that 592 direct energy paths were required to describe 90% of the overall total energy intensity for ‘residential building construction’. By extracting direct energy paths using yet smaller threshold values, they were shown to be mutually exclusive. Consequently, the modification of direct energy paths using process analysis data does not cause unwanted indirect effects. A non-standard individual residential building was then selected to demonstrate the benefits of the new input-output-based hybrid analysis method in cases where the products of a sector may not be similar. Particular direct energy paths were modified with case specific process analysis data. Product quantities and direct energy intensities were derived and used to modify some of the direct energy paths. The intention of this demonstration was to determine whether 90% of the total embodied energy calculated for the building could comprise the process analysis data normally collected for the building. However, it was found that only 51% of the total comprised normally collected process analysis. The integration of process analysis data with 90% of the direct energy paths by value was unsuccessful because: • typically only one of the direct energy path components was modified using process analysis data (ie, either the product quantity or the direct energy intensity); • of the complexity of the paths derived for ‘residential building construction’; and • of the lack of reliable and consistent process analysis data from industry, for both product quantities and direct energy intensities. While the input-output model used was the best available for Australia, many errors were likely to be carried through to the direct energy paths for ‘residential building construction’. Consequently, both the value and relative importance of the direct energy paths for ‘residential building construction’ were generally found to be a poor model for the demonstration building. This was expected. Nevertheless, in the absence of better data from industry, the input-output data is likely to remain the most appropriate for completing the framework of embodied energy analyses of many types of products—even in non-standard cases. ‘Residential building construction’ was one of the 22 most complex Australian economic sectors (ie, comprising those requiring between 592 and 3215 direct energy paths to describe 90% of their total energy intensities). Consequently, for the other 87 non-energy sectors of the Australian economy, the input-output-based hybrid analysis method is likely to produce more reliable results than those calculated for the demonstration building using the direct energy paths for ‘residential building construction’. For more complex sectors than ‘residential building construction’, the new input-output-based hybrid analysis method derived here allows available process analysis data to be integrated with the input-output data in a comprehensive framework. The proportion of the result comprising the more reliable process analysis data can be calculated and used as a measure of the reliability of the result for that product or part of the product being analysed (for example, a building material or component). To ensure that future applications of the new input-output-based hybrid analysis method produce reliable results, new sources of process analysis data are required, including for such processes as services (for example, ‘banking’) and processes involving the transformation of basic materials into complex products (for example, steel and copper into an electric motor). However, even considering the limitations of the demonstration described above, the new input-output-based hybrid analysis method developed achieved the aim of the thesis: to develop a new embodied energy analysis method that allows reliable process analysis data to be integrated into the comprehensive, yet unreliable, input-output framework. Plain language summary Embodied energy analysis comprises the assessment of the direct and indirect energy requirements associated with a process. For example, the construction of a building requires the manufacture of steel structural members, and thus indirectly requires the energy used directly and indirectly in their manufacture. Embodied energy is an important measure of ecological sustainability because energy is used in virtually every human activity and many of these activities are interrelated. This thesis is concerned with the relationship between the completeness of embodied energy analysis methods and their reliability. However, previous industry-based methods, while reliable, are incomplete. Previous national statistical methods, while comprehensive, are a ‘black box’ subject to errors. A new method is derived, involving the decomposition of the comprehensive national statistical model into components that can be modified discretely using the more reliable industry data, and is demonstrated for an individual building. The demonstration failed to integrate enough industry data into the national statistical model, due to the unexpected complexity of the national statistical data and the lack of available industry data regarding energy and non-energy product requirements. These unique findings highlight the flaws in previous methods. Reliable process analysis and input-output data are required, particularly for those processes that were unable to be examined in the demonstration of the new embodied energy analysis method. This includes the energy requirements of services sectors, such as banking, and processes involving the transformation of basic materials into complex products, such as refrigerators. The application of the new method to less complex products, such as individual building materials or components, is likely to be more successful than to the residential building demonstration

    Life-cycle energy analysis of building integrated photovoltaic systems (BiPVs) with heat recovery unit

    Full text link
    Building integrated photovoltaic (BiPV) systems generate electricity, but also heat, which is typically wasted and also reduces the efficiency of generation. A heat recovery unit can be combined with a BiPV system to take advantage of this waste heat, thus providing cogeneration. Two different photovoltaic (PV) cell types were combined with a heat recovery unit and analysed in terms of their life-cycle energy consumption to determine the energy payback period. A net energy analysis of these PV systems has previously been performed, but recent improvements in the data used for this study allow for a more comprehensive assessment of the combined energy used throughout the entire life-cycle of these systems to be performed. Energy payback periods between 4 and 16.5 years were found, depending on the BiPV system. The energy embodied in PV systems is significant, emphasised here due to the innovative use of national average input&ndash;output (I&ndash;O) data to fill gaps in traditional life-cycle inventories, i.e. hybrid analysis. These findings provide an insight into the net energy savings that are possible with a well-designed and managed BiPV system.<br /

    Embodied energy analysis of the refurbishment of a small detached building

    Full text link
    Energy efficient design principles and the minimisation of operational energy requirements have been demonstrated in the refurbishment of a small existing residential building. Significant thought has been given to these areas, together with an emphasis on the minimisation of resource consumption and material wastage. However, less consideration has been given to the embodied energy of the additional materials, components and systems required to meet these aims. The additional embodied energy may reduce the advantages of minimising the operational energy consumption by extending the energy payback period beyond the life of the building. In general, the embodied energy of buildings and their products has been found to be significant, when national average input-output data is used to fill gaps in traditional life-cycle assessment inventories. Through the use of an input-outputbased hybrid embodied energy analysis, the embodied energy of this refurbished building has increased by 63% compared to the existing building, showing the impact that filling the gaps in traditional inventories can have on energy payback periods.<br /

    Predicted impact of user behaviour on household energy savings

    Full text link

    Modelling direct and indirect water requirements of construction

    Full text link
    Water consumed directly by the construction industry is known to be of little importance. However, water consumed in the manufacture of goods and services required by construction may be significant in the context of a building\u27s life cycle water requirements and the national water budget. This paper evaluates the significance of water embodied in the construction of individual buildings. To do this, an input-output-based hybrid embodied water analysis was undertaken on 17 Australian non-residential case studies. It was found that there is a considerable amount of water embodied in construction. The highest value was 20.1 kilolitres (kL)/m2 gross floor area (GFA), representing many times the enclosed volume of the building, and many years worth of operational water. The water required by the main construction process is minimal. However, the water embodied in building materials is considerable. These findings suggest that the selection of elements and materials has a great impact on a building\u27s embodied water. This research allows the construction industry to evaluate design and construction in broad environmental terms to select options that might be cost neutral or possibly cost positive while retaining their environmental integrity. The research suggests policies focused on operational water consumption alone are inadequate. <br /

    Elastomer solubility and stress relaxation in bio-lubricants

    Get PDF
    This study presents novel results from in-situ stress relaxation tests using rubber O-ring seals immersed in bio-lubricant base oils (jojoba, soybean and palm oil), with a mineral base oil used for comparison. Little information is available on the interaction of bi-lubricants and elastomers. The use of Hanson Solubility Parameter modelling methods was considered for assessing compatibility. Some correlation was found between experimental results for EPDM. Results were inconclusive for NBR and FKM. EPDM immersed in palm and soybean oil suffered minor shrinkage, caused by stress relaxation. Swelling occurred with EPDM immersed in jojoba and mineral base oil, caused by diffusion. Results for nitrile showed shrinkage for all oils. Less than 1% change in mass occurred for all oils and FKM
    corecore